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Technical Abstract

Sepsis (severe infection with organ failure) is a dangerous condition that is a leading
cause of patient mortality, and is clinically challenging to treat. In the medical literature,
there is no well-established treatment strategy for sepsis, and clinicians lack decision
support tools to assist them when treating patients with sepsis.

This work explores the use of reinforcement learning (RL) to provide medical decision
support for sepsis treatment. It considers the use of RL algorithms and observational
data from intensive care units (ICUs) to deduce improved medical treatment strategies
(or policies) for sepsis. Two areas are addressed in this work. Firstly, an empirical
procedure to evaluate sepsis treatment strategies is developed. Secondly, the use of
continuous state-space model-based RL to discover improved medical treatment policies
for sepsis is investigated. The evaluation procedure considered in this work is used to
assess the treatment policies learned with model-based RL.

The empirical evaluation methodology developed uses Off-Policy Evaluation (OPE)
to assess medical treatment strategies. OPE requires modelling the decision making
strategy used by clinicians and key statistics of the underlying environment from which
patient physiological data are generated. Reliable evaluation is obtained using a k-
Nearest Neighbours model to represent clinician behaviour and the Fitted Q Iteration
algorithm to represent environmental statistics. This approach could be used more
generally for OPE in other domains.

The model-based RL procedure in this work firstly constructs a physiological
model for patients with sepsis (environment modelling), and then uses this model
to identify suitable treatment strategies (policy search). Both tasks require special
considerations given the highly stochastic nature of medical data, and the need for
the discovered treatment strategies to remain interpretable. The resulting solution
proposes an algorithm, using neural networks, to learn a suitable treatment strategy.
This treatment strategy appears to improve on what clinicians follow, and insights from
it could be used to improve the standard of patient care.
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Nomenclature

Roman Symbols
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Chapter 1

Introduction

Sepsis (severe infection with organ failure) is a dangerous condition that is a leading
cause of patient mortality [1] and costs hospitals billions of pounds to treat [2]. Sepsis
is often managed by giving patients intravenous fluids and vasopressors. Different
dosage strategies for these two interventions can greatly affect patient outcomes, which
demonstrates how important treatment decisions are [3]. However, clinicians still lack
decision support tools to assist them when treating patients with sepsis [4].

This work explores the use of reinforcement learning (RL) to provide medical
decision support for sepsis treatment. The study considers the use of RL algorithms
and observational data from intensive care units (ICUs) to deduce improved medical
treatment strategies (or policies) for sepsis. The use of RL in this work is well-motivated
over supervised learning, primarily because the objective is to discover improved
strategies from suboptimal training examples, and RL algorithms are designed for this
particular scenario.

This study develops on the ideas explored in Raghu et al. [5], and examines two
related directions. The objectives of this work are to:

1. Develop an empirical evaluation procedure to assess the quality of medical treat-
ment strategies for sepsis.

2. Investigate whether continuous state-space model-based RL algorithms can be
used to find improved treatment policies for sepsis.

Developing a reliable evaluation procedure is an important task, because without such
a methodology, it is difficult to assess whether a learned treatment strategy improves on
what is currently followed by doctors. However, evaluating medical treatment strategies
is challenging. Common approaches to evaluation in RL include deploying a decision
making strategy in the real-world or in a simulator and observing its performance.
Real-world deployment is not appropriate for problems in healthcare, because a medical
treatment strategy cannot be used in a hospital prior to knowing whether it is safe, for
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ethical reasons. Developing a reliable simulator for evaluation is also challenging, as
it requires a highly accurate physiological model, which is difficult to construct. It is
therefore necessary to use a method of evaluation that relies on the observational data
available already – this is the problem of Off-Policy Evaluation (OPE) [6].

There has been significant prior research in OPE [6–9], but past empirical work
has focused only on synthetic benchmark scenarios. In real-world observational studies
(such as the one considered here), OPE methodologies face two key problems: unknown
behaviour policies and hard-to-estimate approximate model terms. Both the behaviour
policy and approximate model terms are required for accurate OPE. In medical domains,
the behaviour policy is the probability of a doctor deciding on the chosen medical
intervention, given the patient’s physiological state. When this is unknown, it can be
estimated from data, but estimation errors lead to flawed OPE. Approximate model
terms represent key statistics of the underlying environment from which the data are
generated. They can be hard to estimate in complex state-spaces (as examined in this
work), and as with behaviour policies, estimation errors result in inaccurate OPE. The
first objective of this work is therefore to develop a methodology to accurately estimate
behaviour policies and approximate model terms for the sepsis domain and use these
estimates in OPE to evaluate medical treatment strategies.

The second objective of this study — exploring the use of model-based RL with
continuous state-spaces — is a well-motivated direction of work. Prior research has
examined model-free RL with continuous state-spaces [5] and model-based RL with
discrete state-spaces [10] for discovering sepsis treatment policies. However, both model-
free RL and discretised state-space modelling have important limitations. Model-free
RL can be data-inefficient and typically has poor sample complexity [11]; model-based
RL can improve on these shortcomings. Discrete state-space models cause information
to be lost from the original features (due to the discretisation process) and this can
worsen the quality of the discovered treatment policies. Continuous state-space models
are more challenging to train, but they utilise all available information about patient
physiology, which could lead to finding improved treatment strategies.

This dissertation addresses these two objectives as follows. Chapter 2 provides
background information about Markov Decision Processes (MDPs), Reinforcement
Learning and Off-Policy Evaluation. It introduces the specific MDP framing used for
the sepsis domain. Chapter 3 addresses OPE, including behaviour policy estimation
and developing approximate models. Chapter 4 considers model-based RL, and explores
building physiological models for use in model-based RL algorithms and developing a
procedure for policy search – using the physiological model to find treatment policies.
This chapter provides a qualitative and quantitative assessment of the discovered policies.
The quantitative assessment uses the OPE procedure developed in Chapter 3.



Chapter 2

Background

This chapter provides background information about the reinforcement learning problem,
Markov Decision Processes and Off-Policy Evaluation. Information is given about the
specific modelling for the sepsis treatment problem.

2.1 Reinforcement Learning and
Markov Decision Processes

In the reinforcement learning (RL) problem, an agent’s interaction with an environment
can be represented by a Markov Decision Process (MDP). An MDP is defined by a
tuple ⟨S, A, R, P, P0, γ⟩, where S is the state-space, A is the action-space, R(s, a, s′) is
the reward function, governing the reward r received when taking action a in state s

and transitioning to state s′, P (·|s, a) is the transition probability distribution, P0 is
the initial state distribution, and γ ∈ [0, 1) is the discount factor. Define the policy, π,
as a mapping from states to actions: π(a|s) represents the probability of taking action
a in state s.

Let H := (s0, a0, r0, . . . , sT −1, aT −1, rT −1, sT ) be a trajectory generated when follow-
ing policy π. The T -step return of a trajectory H, R0:T −1(H), is defined as follows:

R0:T −1(H) =
T −1∑
t=0

γtrt

Define the value of a policy π, V π, as the expected return over trajectories it generates,
with the expectation being taken over the probability distribution of trajectories under
policy π:

V π = EH∼P π
H

[
R0:T −1(H)

]
.
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Let the value and action value functions of a policy π at a state s or state-action
pair (s, a) be V π(s) and Qπ(s, a) respectively. These are defined as the expected return
of a trajectory starting at state s or state-action pair (s, a), and then following policy
π, as follows:

V π(s) = EH∼P π
H

[
R0:T −1(H)|s0 = s

]
Qπ(s, a) = EH∼P π

H

[
R0:T −1(H)|s0 = s, a0 = a

]
From these definitions, we can relate V π(s) and Qπ(s, a) as follows:

V π(s) = Ea∼π(a|s)
[
Qπ(s, a)

]
We can relate V π and V π(s) by taking an expectation over the starting state s0:

V π = Es0∼P0

[
V π(s0)

]
The goal of an RL agent is to learn an optimal policy π∗(s), defined as one that

maximises its expected discounted future return:

π∗(s) = arg maxπ V π(s)

In model-based RL, learning proceeds by firstly modelling the transition distribution
P and then using this to find π∗. In model-free RL, π∗ is learned directly without
modelling P . Prior work has considered model-free RL in continuous state-spaces [5];
this work considers the use of model-based RL.

2.2 Off-Policy Evaluation

The Off-Policy Evaluation (OPE) problem considers estimating the value V πe of an
evaluation policy πe given a set of trajectories D = {H(i)}n

i=1 generated independently
by following a (typically distinct) behaviour policy πb. The estimator V̂ πe is desired to
have low mean squared error (MSE), defined as follows:

MSE(V πe , V̂ πe) = EP
πb
H

(
(V πe − V̂ πe)2

)
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When there are trajectories available from following πe, perhaps from using πe in a
simulator, the OPE problem reduces to one of on-policy evaluation, where πe = πb. To
find V̂ πe in this setting, the Monte Carlo estimator can be used:

V̂ πe
MC = 1

N

N∑
i=1

R0:T −1(H(i))

Prior work in OPE has approached the problem of estimating the quantity V πe

using one or both of the techniques of Importance Sampling (IS) and Approximate
Model (AM) estimation [8]. These methods are now explained further.

2.2.1 Importance Sampling (IS)

The IS approach to evaluation uses importance sampling to adjust for the difference
between the probability of a trajectory H under the behaviour policy πb and the
probability under the evaluation policy πe. To form the IS OPE estimator, first define
the importance weight ρT −1 to be the ratio of the probability of the first T steps of
trajectory H under πe to the probability under πb

1:

ρT −1 =
T −1∏
t=0

πe(aH
t |sH

t )
πb(aH

t |sH
t )

The IS estimator of V πe can then be defined as follows [6], with i indexing the
trajectories in D:

V̂ πe
IS = 1

n

n∑
i=1

ρ
(i)
T −1

T −1∑
t=0

γt r
(i)
t

Two commonly used estimators in the IS family, which improve on this simple
estimator, are the step-wise IS and step-wise Weighted IS (WIS) estimators, defined as
follows:

V̂ πe
step-IS = 1

n

n∑
i=1

T −1∑
t=0

γtρ
(i)
t r

(i)
t

V̂ πe
step-WIS =

n∑
i=1

T −1∑
t=0

γt ρ
(i)
t∑n

i=1 ρ
(i)
t

r
(i)
t

These definitions hold for a dataset of trajectories with the same length; an extension
to handle trajectories of different length can be found in Doroudi et al. [12] – this is
called the Per-Horizon extension (resulting in the PHIS and PHWIS estimators).

1Assume henceforth that for all state-action pairs (s, a) ∈ S × A, if πb(a|s) = 0 then πe(a|s) = 0.
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The step-IS estimator is an unbiased estimator of V πe ; that is, E
[
V̂ πe

step-IS

]
= V πe .

However, it suffers from high variance, due to the product of up to T probability ratios,
which can become very small or very large depending on πb and πe.

The step-WIS estimator is biased, but consistent; that is, for finite n, E
[
V̂ πe

step-WIS

]
̸= V πe

but as n → ∞, E
[
V̂ πe

step-WIS

]
→ V πe . This estimator has lower variance than step-IS be-

cause the importance weights are bounded between zero and one (via the normalisation).
However, its variance can often still be unacceptably high [8]. All IS estimators can
have significant bias when the behaviour policy is unknown and estimated incorrectly.

2.2.2 Approximate Models (AMs)

In AM estimation, an approximate model M of the underlying MDP is firstly constructed.
This is used to find V̂ π

M(s) and Q̂π
M(s, a), which are estimates of the state and action

value functions for policy π under M respectively. The approximate model can be used
to directly find V πe :

V̂ πe
AM = 1

n

n∑
i=1

∑
a∈A

πe(a|s(i)
0 )Q̂πe

M(s(i)
0 , a)

Depending on the model class and algorithm used to define M , it can be difficult to
prove that these estimators are unbiased/consistent; therefore, it may not be possible
to trust their estimates in isolation.

2.2.3 Doubly Robust (DR)

DR methods [7, 8] combine IS and AM techniques in order to obtain unbiased, reduced
variance estimators. The Weighted Doubly Robust (WDR) estimator, which has
demonstrated effective empirical performance [8], is defined as follows:

V̂ πe
WDR =

n∑
i=1

T −1∑
t=0

(
γtw

(i)
t r

(i)
t − γt

(
w

(i)
t Q̂πe

M(s(i)
t , a

(i)
t ) − w

(i)
t−1 V̂ πe

M (s(i)
t )

))

where w
(i)
t is defined as:

w
(i)
t = ρ

(i)
t∑n

i=1 ρ
(i)
t

2.2.4 OPE in this work

We consider the problem of obtaining reliable OPE for medical treatment strategies
using the WIS, AM, and WDR approaches. We firstly define a step-wise extension for
the PHWIS estimator to reduce its variance and an extension on the WDR estimator
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to handle variable trajectory lengths. We then explore how to estimate the unknown
behaviour policy πb(·|s) and the approximate model terms Q̂πe

M(s, a).

2.3 Case study: RL for sepsis treatment strategies

The goal in this work is to explore the use of RL as a medical decision support tool for
sepsis treatment. This section outlines how the medical treatment of sepsis is modelled,
the specific patient cohort considered, and the related work using RL to identify sepsis
treatment strategies.

2.3.1 Markov Decision Process (MDP) formulation

This work adopts the modelling of sepsis treatment presented in Raghu et al. [5], where
the medical treatment process for a sepsis patient was framed as an MDP. Discrete
timesteps in the MDP are defined as four-hour blocks.

The state-space S captures patient physiology, with the state at a given timestep
st representing a patient’s physiological state, represented as a continuous vector of
demographic features, vital signs, and lab values. In order to capture temporal patterns
in a patient’s physiology, the state representation used in this work concatenates the
previous three timesteps’ raw state information to the current time’s state vector,
resulting in a vector of length 198. A full list of the features in the state space is
provided in Appendix A.

The action-space, A, is of size 25 and is discretised over dosage amounts of vaso-
pressors and IV fluids, two drugs commonly given to sepsis patients. The discretisation
includes a specific dosage for ‘no drug given’.

The reward rt is clinically guided, with positive rewards being issued at intermediate
timesteps for improvements in a patient’s wellbeing (with improvement being defined
by reductions in certain severity scores), and negative rewards for deterioration. At the
terminal timestep of a patient’s trajectory, a reward is assigned that is positive in the
case of survival, and negative otherwise.

2.3.2 Patient cohort

Data for the patients in the cohort considered were obtained from the Medical Informa-
tion Mart for Intensive Care (MIMIC-III v1.4) database [13]. The dataset used was the
same as that in Raghu et al. [5]. The cohort of patients considered fulfill the Sepsis-3
criteria [14] – summary information is presented in Table 2.1. For each patient, at
every timestep for the duration of their stay in the ICU, we have information about
their physiological state (as a continuous vector) and the treatment they received from
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clinicians (in terms of IV fluid and vasopressor dose). We also know their eventual
outcome (survival/mortality).

Table 2.1 Summary statistics for the patient cohort.

% Female Mean Age Hours in ICU Total Population
Survivors 43.6 63.4 57.6 15,583
Non-survivors 47.0 69.9 58.8 2,315

2.3.3 Prior work on RL for sepsis treatment

Komorowski et al. [10] and Raghu et al. [5] investigated using RL to discover sepsis
treatment strategies, using the same cohort as this work. Komorowski et al. [10] tackled
this problem by using discretised state-space, discretised action-space models, and
Q-value iteration to discover suitable medical treatment strategies. Raghu et al. [5]
extended this work to consider continuous state-space models.

Continuous state-space models are in general preferable to discrete state-space models
as they do not lose information present in the original state-space via a discretisation
step [5]. However, it is more challenging to apply RL algorithms in the fully continuous
setting; tabular methods with proven convergence properties [15] can no longer be used.
Raghu et al. [5] specifically investigated the use of model-free deep RL to discover
medical treatment strategies in continuous state-space settings, using deep Q-learning
[16], which involves the use of neural networks to discover an optimal policy.

In this work, we approach the problem of learning medical treatment strategies
for sepsis using model-based RL, which may suffer from model bias, but has better
generalisation and data-efficiency than model-free RL [11]. We also examine empirical
methods to reliably evaluate the discovered medical treatment strategies, which has not
been explored in detail beforehand.



Chapter 3

Off-Policy Evaluation

This chapter considers how to develop a reliable evaluation procedure for sepsis treatment
strategies. As described in Chapter 1, we must assess the quality of medical treatment
policies using the observational data available already – this is Off-Policy Evaluation
(OPE). We consider evaluating policies using three OPE methods – Weighted Importance
Sampling (WIS), Approximate Model (AM) and Weighted Doubly Robust (WDR).
Using these methods requires an estimate of the behaviour policy in the dataset, πb,
and an estimate of the action value function for the evaluation policy, Q̂πe(s, a).

The section begins by defining OPE estimators that can be used with a dataset of
differing trajectory lengths; this extends work by Doroudi et al. [12]. We then address
the tasks of behaviour policy and approximate model estimation, and conclude with
assessing the quality of the developed OPE procedure.

3.1 Per-Horizon OPE estimators

OPE estimators such as the Weighted Importance Sampling (WIS) estimator, defined
in Section 2.2, are designed to work with a dataset of trajectories of the same length, or
horizon. As the lengths of trajectories vary in the dataset considered, these estimators
must be extended to handle trajectories with different horizons.

Doroudi et al. [12] defined the Per-Horizon Weighted Importance Sampling (PHWIS)
estimator as follows:

V̂ πe
PHWIS =

∑
l∈L

Wl
1∑

{τi|Ti=l} ρ
(i)
Ti−1

∑
{τi|Ti=l}

ρ
(i)
Ti−1

Ti−1∑
t=0

γt r
(i)
t

where L is the set of all trajectory lengths, and Wl is the fraction of the total number
of trajectories n with length equal to l:

Wl = | {τi|Ti = l} |
n
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This estimator has high variance; we define a lower variance equivalent by considering
a step-wise version:

V̂ πe
step-PHWIS =

∑
l∈L

Wl

∑
{τi|Ti=l}

Ti−1∑
t=0

ρ
(i)
t∑

{τi|Ti=l} ρ
(i)
t

γt r
(i)
t

We now introduce approximate model terms into the estimator (to reduce its
variance) and form the Per-Horizon Weighted Doubly Robust (PHWDR) estimator.
Define V̂ πe

WDR, l as the WDR estimator given all trajectories of length l. We can write
this as follows:

V̂ πe
WDR, l =

∑
{τi|Ti=l}

T −1∑
t=0

(
γtw

(i)
t,l r

(i)
t − γt

(
w

(i)
t,l Q̂πe

M(s(i)
t , a

(i)
t ) − w

(i)
t−1,l V̂ πe

M (s(i)
t )

))

with w
(i)
t,l defined as:

w
(i)
t,l = ρ

(i)
t∑

{τi|Ti=l} ρ
(i)
t

Then, with Wl as defined before:

V̂ πe
PHWDR =

∑
l∈L

Wl V̂ πe
WDR, l

The step-PHWIS and PHWDR estimators are used for OPE in this work. For
clarity, the step-PHWIS estimator is referred to as the PHWIS estimator from this
point onwards.

3.2 Behaviour policy estimation

We now consider how to estimate the behaviour policy in the dataset for use in
importance sampling (IS). As IS requires the probability of taking an action under the
behaviour policy, πb(a|s), our behaviour policy model must represent the full probability
distribution of actions, given states. We therefore must decide a model class to represent
the behaviour policy that provides well-calibrated probability estimates, not just high
accuracy; that is, the probability estimates produced by the model should represent
true probabilities.

We motivate the discussion by considering the effect of miscalibration on OPE
estimates, to illustrate the importance of calibration in OPE. We then consider how to
obtain well-calibrated behaviour policy estimates for the specific dataset used in this
work.
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3.2.1 Importance of model calibration

To analyse the empirical effect of poorly calibrated behaviour policy models, we consid-
ered OPE in a synthetic domain, illustrated in Figure 3.1. Our domain was a continuous
2D map (s ∈ R2) with a discrete action-space, A = {1, 2, 3, 4, 5}, with actions repre-
senting a movement of one unit in one of the four coordinate directions or staying in
the current position. Gaussian noise of zero mean and specifiable variance was added
onto the state of the agent after each action, to provide environmental stochasticity. An
agent started in the top left corner of the domain and received a positive reward within
a given radius of the top right corner, and a negative reward within a given radius of
the bottom left corner. The horizon was set to be 15 in all experiments, to reflect the
typical trajectory length in the original medical domain.

Fig. 3.1 The synthetic domain used to examine the importance of OPE calibration.

To estimate the behaviour policy, we used a k-Nearest Neighbours (kNN) model; we
built a kNN data structure on a set of training data points, and at test time, used the
points closest in Euclidean distance to compute an empirical probability distribution
over the possible actions. The accuracy of the model was varied by changing the number
of trajectories and neighbours used for behaviour policy estimation.

Figure 3.2 shows how the average absolute error in the behaviour policy estimation,
1
n

∑n
i=1 |π(a(i)|s(i))− π̂(a(i)|s(i))|, relates to the fractional error in OPE, for two behaviour

policies of differing complexity. The mean and standard deviation of OPE error are
shown. Note that the OPE error considers only the error incurred by using an estimated
behaviour policy:

OPE error = VWIS, µ̂ − VWIS

VWIS

where VWIS, µ̂ refers to the WIS estimate when using an estimated behaviour policy µ̂,
and VWIS is the WIS estimate using the true behaviour policy.

This plot shows that the quality of the OPE result is strongly dependent on the
quality of the behaviour policy estimation. Average absolute errors in behaviour policy
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Fig. 3.2 Mean and standard deviation of the fractional error in OPE as a function of the
average absolute error in behaviour policy estimation, 1

n

∑n
i=1 |π(a(i)|s(i)) − π̂(a(i)|s(i))|,

for two different behaviour policies. Poorly calibrated behaviour policy models lead to
highly inaccurate OPE.

models of as small as 0.06 can incur errors of up over 50% in the estimated value.
The error incurred worsens as the trajectory length is increased due to the product
of (incorrect) terms when forming the importance weight. It is clear that having a
well-calibrated model of the behaviour policy is critical for good OPE.

3.2.2 Model calibration in the medical domain

We now consider how to obtain well-calibrated behaviour policy models in the sepsis
domain. The calibration of a behaviour policy model can be assessed by computing
the distance between the estimated distribution over actions using the model, π̂b(·|s),
and the ground-truth distribution over actions, πb(·|s). As πb(·|s) is unknown for this
dataset, we proposed to approximate it.

We assumed that πb(·|s) could be determined by considering the empirical dis-
tribution over actions formed from the set of neighbours of s, where the neighbours
were determined by assessing physiological similarity with s. This makes intuitive
sense, as clinicians would be expected to take similar actions for patients with similar
physiological states.

We defined similarity of patient states using a ‘physiological distance kernel’, which
was based on Euclidean distance and upweighted informative features of the patient’s
state. Informative features were the patient’s SOFA score, lactate levels, fluid output,
mean and diastolic blood pressure, PaO2/FiO2 ratio, chloride levels, weight, and age.
These are clinically interpretable: the SOFA score and lactate levels provide indications
of sepsis severity; careful monitoring of a patient’s fluid levels is essential when managing
sepsis [17]; and blood pressure indicates whether a patient is in septic shock. These
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features were upweighted by a factor of 2 in our distance kernel (where D = 198, the
dimensionality of our state representation):

k(s, s′) =
D∑

i=1
wi(si − s′

i)2

wi = 2, for informative i

wi = 1, otherwise

To find the ground-truth distribution for a given test state, we built a k-Nearest
Neighbours (kNN) model with this distance kernel on the test set, and formed an
empirical distribution over actions using these k neighbours (considering what actions
were taken in those neighbouring k states and then aggregating counts and normalising).
We considered 150 neighbours to provide reasonable coverage in the estimate. A Ball
Tree data structure, implemented in the scikit-learn library [18], was used to find the
kNN.

Behaviour policy models: Several different models were considered, including
logistic regression (LR), random forest (RF) with 100 trees, neural network (NN), and
an approximate kNN model using random projections [19] (used instead of full kNN as
approximate kNN is more computationally efficient). LR and RF were implemented
using the scikit-learn library [18]. The approximate kNN model was constructed using
the ANNOY library [20]. The neural network was implemented using TensorFlow [21]
and had the following architecture:

• Input: patient state for current timestep st concatenated with patient state and
clinician action for the previous three timesteps. Let this be ht.

• Fully-connected layer, 64 hidden units, Rectified Linear Unit (ReLU) activation
• Fully-connected layer, 64 hidden units, ReLU activation
• Output layer: fully-connected, 25 output units (probability of each action in the

action-space), softmax activation. Let this output be π̂b.
This network was trained with stochastic gradient descent and the Adam [22] optimiser.
More information about neural networks is provided in Section 4.1

All parametric behaviour policy models (LR, RF, and NN) were trained to predict
the clinician action given ht. We assess the quality of the models using the total
variation distance, defined as:

δ
(
πb(·|s), π̂b(·|s)

)
= 1

2
∑
a∈A

|πb(a|s) − π̂b(a|s)|

Calibration results: Table 3.1 shows the average total variation distance between
the estimated and target behaviour distributions for the different behaviour policy
models. Querying the Ball Tree data structure was computationally expensive (∼1
second per query), so the results shown average over 500 sampled test states for patients
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at different severities (defined by different SOFA scores). The parametric models are
poorly calibrated, especially for sampled states with high severity, where there are fewer
data points available for estimation.

To gain more insight into the results and the form of miscalibration, Figure 3.3
shows the predictive distribution over actions for the neural network as compared to
the ground truth and approximate kNN models. The neural network model suffers from
over-confident predictions (a result noted by Guo et al. [23]) and can also have very
different predictions to what is expected; this indicates that it is unsuitable for use as a
behaviour policy model. Note that the neural network achieved the highest held-out
accuracy at predicting clinical action as compared to all other models (approximately
60%), but is still poorly calibrated: high accuracy does not imply good calibration.

Table 3.1 Average total variation distance between the estimated and target behaviour
policy distributions for different policy models; logistic regression (LR), random forest
(RF), neural network (NN), and approximate kNN; stratified by SOFA score (patient
severity).

SOFA LR RF NN Approx kNN
0 - 4 0.249 0.214 0.213 0.129
5 - 9 0.269 0.254 0.246 0.152
10 - 13 0.309 0.309 0.399 0.210
14 - 23 0.356 0.337 0.426 0.199

(a) Overconfident predictions (b) Incorrect predictions

Fig. 3.3 Examples of how neural networks can suffer from poor calibration as behaviour
policy models. In Figure 3.3a, the neural network assigns higher probability to actions
than expected; in Figure 3.3b the distribution of actions is very different to what is
expected. The approximate kNN model does not suffer from these issues.
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3.3 Approximate Model estimation

We now consider the task of building an approximate model (AM) of an MDP to
directly estimate V πe . Correct AM estimation can be challenging in complex domains.
Incorrect models can significantly worsen the performance of OPE estimators, so it is
important to evaluate relevant methods and decide what is most appropriate. Several
options were considered in this work:

Model the MDP directly: This involves learning a model for the transition distri-
bution P (st+1|st, at) and the reward function R(st, at, st+1) and then obtaining V̂ πe(s)
by averaging the returns from rollouts starting at s. This method is highly challenging
for the sepsis domain. There is a significant degree of stochasticity from timestep-
to-timestep in patient physiology, making it very difficult to predict the evolution
of physiological features. The data available to us for learning the MDP model are
also noisy and contain missing values (which have been imputed), complicating the
prediction task. Developing accurate transition distribution models is therefore very
difficult. The resulting degree of inaccuracy in transition distribution modelling (seen
in Section 4.1) was unacceptable for evaluation purposes.

Fitted Q Iteration: This approach works directly in the continuous state-space and
proceeds by solving a sequence of supervised learning problems that results in learning
a parameterised function f(s, a; θ) that approximates Qπe(s, a) [24]. At step k + 1 in
the procedure, parameters θk+1 are found by minimising the following loss function:

θ∗
k+1 = arg minθ

1
|D|

∑
(st,at,rt,st+1)∈D

[
ϵ (θ, θk)

]2

ϵ (θ, θk) = rt + γ
∑

a′∈A

(
πe (a′|st+1) f (st+1, a′; θk)

)
− f(st, at; θ)

We set f(s, a; θ1) = 0 at initialisation, and use γ = 0.99. We used a random forest with
80 trees to model f(s, a; θ), as this produced stable results. The scikit-learn library was
used for implementation [18]. The specific loss function stated here incorporates a sum
over actions – this is the form of the objective used in the Expected-SARSA algorithm
[25], and led to reduced convergence time.

Kernel-based RL: Kernel-based methods, introduced in Ormoneit and Sen [26], can
be used to learn Q̂πe(s, a). They have stability advantages over temporal difference
methods such as Q-learning and SARSA learning. The implementation of kernel-based
RL in this work followed the description in Ormoneit and Sen [26]. The radial basis
function was used as the kernel.
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Discretise the state-space and then use tabular SARSA learning: In this
approach, the state-space was firstly discretised using k-means clustering. All states st

were then assigned their nearest cluster centroid as their new label. Following this, the
SARSA algorithm [27] was applied to learn Q̂πe(s, a). As the state-space was discretised,
Q̂πe(s, a) was represented by a table of values, with entries for each state-action pair.
This method was previously used by Komorowski et al. [10]. In this work, we used 1000
cluster centroids, which was found to provide a good tradeoff between convergence time
and accuracy when running the algorithm.

We considered Fitted Q Iteration (FQI), Kernel-Based RL (KBRL) and Discrete
SARSA when constructing approximate models.

3.4 Testing behaviour policy and approximate model
estimation

3.4.1 OPE testing procedure

In the sepsis domain, we cannot easily verify the correctness of OPE because we do not
have access to the ground truth value V πe for arbitrary πe. To combat this problem,
we proposed the following procedure:

1. Split the original dataset D into two subsets, D1 and D2.

2. Estimate the behaviour policy in D1. Let this be π1.

3. Estimate the behaviour policy in D2. Let this be π2.

4. Find the Monte Carlo estimate V̂ π1
MC using D1, by averaging returns. This is

an on-policy evaluation task and we have many trajectories, so we expect the
estimate to be accurate. Therefore, assume V̂ π1

MC ≈ V π1 .

5. With π2 as the behaviour policy and π1 as the evaluation policy, use OPE (PHWIS,
AM, or PHWDR) to find V̂ π1

OPE = V̂ π1 from D2.

6. Assess OPE quality by comparing V̂ π1
MC ≈ V π1 and V̂ π1

OPE = V̂ π1 . With good-
quality OPE and correct behaviour/evaluation policy estimation, we expect good
agreement with the Monte Carlo estimate.

We considered three different methods of splitting the trajectories – time based,
random, and intervention based splitting:
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• Time: The trajectories were divided into the two sets based on their starting
times. We know the absolute time at which a patient’s ICU record begins; we
sorted these start times across all patients, and placed all trajectories starting
before a threshold into D1, and all those after into D2. The policy followed by
clinicians has changed slightly between older and newer trajectories; this might
indicate a shift in clinical practices over time. The average total variation distance
between π1 and π2 was about 0.15.

• Random: Randomly select half the trajectories to go in one set, and half to go in
the other. In the limit of infinite data, the two behaviour policies will be identical,
but in the finite data setting there are slight differences in the two policies. The
average total variation distance between π1 and π2 was about 0.09.

• Intervention: Let D2 contain half of all the patients that did not receive any
vasopressors (one of the two medications considered in the action-space) in their
ICU stay and D1 contain all the other patients. The half of patients that were not
treated with vasopressors that went into D2 were chosen randomly. The average
total variation distance between π1 and π2 was about 0.29.

Random and intervention splitting used randomness when forming D1 and D2; more
robust results were therefore obtained by averaging over at least 10 different be-
haviour/evaluation policy pairs. When computationally feasible, more pairs were used.
With all methods of splitting, D1 and D2 were split further into training, validation,
and testing sets (70:10:20).

We compared V π1 and V̂ π1 using the mean squared error, MSE(V π1 , V̂ π1). This was
computed via a bootstrapped method. We repeated the following steps:

1. Sample n = 200 trajectories from D2.

2. Use OPE to get V̂ π1 .

3. Repeat this process k = 500 times; each trial produces a sample of V̂ π1 .

4. Compute the MSE between these samples and V π1 .

3.4.2 Per-Horizon Weighted Importance Sampling (PHWIS)
results

Table 3.2 presents the MSE when using the PHWIS estimator and different methods
of splitting the dataset and behaviour policy estimation, using the methodology in
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Section 3.4.1. The behaviour policy models are Approximate kNN (Approx kNN),
Neural network (NN), Logistic Regression (LR) and Random Forest (RF).

On both the random and intervention splitting tasks, the approximate kNN model
gives lower MSE than the neural network model, which may arise due to approximate
kNN having superior calibration. Similar results are obtained on intervention-based
splitting when comparing to RF. On the time-based splitting task, the approximate
kNN model again has the best results. The RF and LR models obtain very poor
results on this task; both models struggled to represent the behaviour policy well. The
neural network does well on this task despite its calibration issues. However, it is
unclear how robust this performance is, as only one behaviour/evaluation policy pair
was considered. As the random and intervention based splitting experiments average
across many different behaviour/evaluation policy pairs, they may be more reliable.

Table 3.2 MSE when using the PHWIS estimator with different methods of behaviour
policy estimation to evaluate policies with time based, random, and intervention based
splitting of the dataset. The behaviour policy models are Approximate kNN (Approx
kNN), Neural Network (NN), Logistic Regression (LR) and Random Forest (RF).

Approx kNN NN LR RF
MSE time split 3.35 3.56 14.4 11.1
MSE random split 2.48 4.04 7.88 3.04
MSE intervention split 2.04 4.65 7.17 3.44

3.4.3 Approximate Model (AM) results

We now assess the performance of the AM estimators. Note that all AM estimation
methods provide us with Q̂πe

M (s, a). We can evaluate a policy using the following relation
(arising from the definition of V̂ πe), drawing n starting states from the evaluation
dataset D2:

V̂ πe
M = 1

n

n∑
i=1

∑
a∈A

πe(a|s(i)
0 )Q̂πe

M(s(i)
0 , a)

Table 3.3 shows the Mean Squared Error (MSE) from AM estimators using Fitted
Q Iteration (FQI), Kernel-based RL (KBRL), and SARSA following discretisation
(discrete SARSA). Due to the FQI method and discrete SARSA methods performing
well on the time based splitting task, they were also examined for the other two splitting
methods. The KBRL method appeared to have a stability issue for some tests and
failed to converge properly; results are therefore not reported for KBRL on the random
and intervention splitting tasks.

The FQI method performs well on the time based and random splitting tasks, and is
superior to the other two methods. In both situations, the evaluation policy is relatively
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close to the behaviour policy, making learning Q̂πe(s, a) straightforward. FQI uses D2,
consisting of trajectories from πb, to learn Q̂πe(s, a). When πb and πe are close, this
problem is better conditioned. In intervention splitting, FQI does more poorly because
the two policies are now more different, making this a harder learning task. Discrete
SARSA has a similar issue on the intervention splitting task, but performs marginally
better than FQI. However, the difference in performance is not very significant.

Table 3.3 MSE when using three different AM approaches for OPE.

Fitted Q Iteration Discrete SARSA Kernel-based
MSE time split 0.0622 1.64 2.37
MSE random split 0.177 1.45 —
MSE intervention split 3.87 3.77 —

3.4.4 Per-Horizon Weighted Doubly Robust (PHWDR)
results

Table 3.4 shows the MSE when using the PHWDR estimator with different approximate
model terms and different methods of behaviour policy estimation. The behaviour
policies are Approximate kNN (kNN) and Neural Network (NN). The AM methods are
Fitted Q Iteration (FQI), Discrete SARSA (SARSA) and Kernel-based RL (KBRL).

The FQI approximate model terms help to reduce the MSE in time based and
random splitting, as compared to using IS alone (i.e. with the PHWIS estimator in
Table 3.2), for both the approximate kNN and neural network behaviour policy models.
As seen in Table 3.3, the MSE of the AM in both these situations is very low, so the
AM terms improve the quality of the estimate. The difference in performance due to
better behaviour policy modelling is not as notable – performance is dominated by the
AM terms. Therefore, although that the neural network is poorly calibrated, the MSE
obtained using it as a behaviour policy model in PHWDR is slightly lower than the
MSE when using approximate kNN. This difference is, however, very small (0.02).

In the intervention based splitting scenario, the MSE is high because the FQI AM
performs poorly, and hence worsens the estimates (regardless of the behaviour policy
model). Once again, the AM terms dominate. Interestingly, although the SARSA AM
had lower MSE than the FQI AM in intervention splitting (as shown in Table 3.3),
when used in PHWDR, the FQI AM performs better. This could be due to the fact
that the AM estimator uses only the the action value estimate for the first state in
a trajectory, Q̂πe

M(s0, a), but PHWDR requires all Q̂πe values. SARSA may represent
the initial timestep more accurately, but fails to represent the others as well. For this
reason, the FQI model is preferable for use in PHWDR.
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These results show how poor quality model terms can worsen the quality of the
evaluation result when using PHWDR, as seen when using approximate kNN and
KBRL/SARSA, and the neural network and KBRL/SARSA. Careful analysis when
deciding the appropriate model classes to use for AM estimation is therefore important.

Table 3.4 MSE when using the PHWDR estimator with different behaviour policy
models and approximate model methods.

kNN-
FQI

NN-
FQI

kNN-
SARSA

NN-
SARSA

kNN-
KBRL

NN-
KBRL

MSE time split 3.05 3.11 6.53 5.80 6.54 10.2
MSE random split 2.04 2.02 10.21 9.17 — —
MSE intervention split 3.90 3.90 4.26 9.15 — —

3.4.5 Conclusions

To summarise the results:

• Behaviour policy estimation: Approximate kNN is the most appropriate
behaviour policy model, given its well-calibrated nature.

• Approximate model estimation: FQI often performs the best, or close to the
best. In one situation, discrete SARSA obtained superior performance, but the
difference between discrete SARSA and FQI’s performance was small.

• Per-Horizon Weighted Doubly Robust (PHWDR) estimator: The com-
bination of approximate kNN and FQI was found to perform well. Discrete
SARSA did not work well as an AM in PHWDR. Although the neural network
behaviour policy model obtained comparable results to approximate kNN when
used in PHWDR with FQI as the AM, this was mainly because the AM dominated
the behaviour policy. Given that approximate kNN is better calibrated, it is the
preferred choice.



Chapter 4

Model-Based Reinforcement
Learning

This chapter explores the use of model-based reinforcement learning (RL) to learn
medical treatment strategies for patients with sepsis, and considers the construction of
effective environment models, the use of environment models to learn policies, and an
evaluation of the learned policies.

4.1 Environment models

The first stage in model-based RL is to learn a model for the transition distribution, P ,
of the underlying Markov Decision Process (MDP).

The task of learning a transition distribution can be equivalently described as the
task of learning an environment model. This framing of the problem is motivated by
the discussion in Nagabandi et al. [28].

The objective is to predict ∆t = st+1 − st, the change in a patient’s physiological
state, which is achieved by learning a function f(ht; θ) where:

∆t = f(ht; θ) + ϵ; ϵ ∼ N (0, I)

ht = g (st, at, st−1, at−1, . . . )

In this work, when used, the function g concatenates the current state-action pair
(st, at) with the previous three timesteps’ state-action pairs. This is to capture some
amount of historical information about the patient’s physiology. Cross-validation
performance (in terms of prediction mean squared error) motivated the use of three
past timesteps of information.

We now consider the different approaches used to construct the environment model.



22 Model-Based Reinforcement Learning

4.1.1 Constructing the environment model

To learn the environment model, represented by the function f , several approaches were
tried, including Non-Bayesian models (linear regression, feedforward neural networks,
recurrent neural networks) and Bayesian models (Bayesian neural networks). These are
described in more detail here.

Linear Regression: These models take in the adjusted state vector ht and apply
a linear transformation: ∆̂t = Wht + b, where W is a weight matrix and b is a bias
vector, both of which are learned by minimising the mean squared error between ∆̂t

and ∆t, via gradient descent:

θ∗ = arg minθ

1
|D|

∑
(st,at,st+1)∈D

∥(∆t − ∆̂t)∥2

This was implemented using the scikit-learn library [18].

Feedforward Neural Networks: These models take as input ht and apply a series
of parameterised linear transformations (with weight matrices Wi and biases bi, with i

indexing the layer) and pointwise nonlinearities (σi) to produce an output. For example,
in the case of a two-layer network: ∆̂t = σ2 (W2 σ1 (W1ht + b1) + b2).

Several different network architectures were experimented with. The best performing
architecture had the following design:

• Input: ht

• Fully-connected layer, 128 units, ReLU nonlinearity

• Batch-normalization [29]

• Fully-connected layer, 32 hidden units, ReLU nonlinearity

• Batch-normalization

• Fully-connected layer, linear activation (producing the output ∆̂t)

Note that the ReLU nonlinearity is described by: σ(z) = max(0, z)
This network was trained using stochastic gradient descent (SGD) and the Adam

[22] optimiser. This was implemented using TensorFlow [21].

Recurrent Neural Networks (RNNs): These are temporal models that use some
embedding of history, encapsulated in a hidden state, and the current input to make
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predictions. A simple RNN can be described as follows:

ct = σh(Wxxt + Wcct−1 + bc)

yt = σy(Wyct + by)

where ct is the hidden state at time t, and yt is the output at time t. Wi and bi

are trainable weight matrices and bias vectors respectively. Note that c is used for the
hidden state and not h, as is conventional, because h is used to describe the output of
the concatentation function g(·)

For environment modelling, a more powerful RNN model, an LSTM [30], was used.
The output yt is now ∆̂t. As with the other models, the model was trained to minimise
the mean squared error between ∆̂t and ∆t. The model was trained using stochastic
gradient descent (SGD) and the Adam [22] optimiser. As the RNN computes its own
representation for the historical state, at every timestep, the raw state and action
vector is passed in — that is, (st, at), rather than ht. RNNs were implemented using
TensorFlow [21].

Bayesian Neural Networks (BNNs): These models represent the full predictive
distribution over ∆̂t instead of providing point estimates. The description provided
here is based on that in Depeweg et al. [31].

As with non-Bayesian neural networks, a likelihood model is specified, mapping the
input to the output, using a series of linear transformations and pointwise nonlinearities.
A prior distribution is specified over the values of the parameters of the weight matrices
and bias vectors; in this case, it is a Gaussian with zero mean and specifiable variance:
θi ∼ N (0, σ2

i ).
In BNN modelling, we aim to form the posterior distribution over the parameters

given the training data, consisting of (ht, ∆t) pairs, and marginalise out the parameters
to get the predictive distribution over ∆̂t.

However, as this marginalisation procedure is intractable, we form a variational
approximation to the posterior distribution, q(θ|D), and minimise the alpha-divergence
between the true posterior and the variational approximation [32]. This minimisation
procedure aims to find the parameters of the approximate posterior; that is, the mean
and variance of the Gaussian distributions that make up the approximate posterior
distribution.
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Samples from the predictive distribution are then obtained by sampling parameter
values from the approximate posterior and averaging:

p(∆̂t|ht, D) =
∫

p(∆̂t|ht, D, θ)q(θ|D)dθ

≈ 1
N

N∑
i=1

p(∆̂t|ht, D, θi); θi ∼ q(θ|D)

The best BNN had two hidden layers, each with 32 hidden units and tanh nonlin-
earities. It was implemented using the Autograd library [33].

As preprocessing, the input data were standardised to zero mean and unit variance.
Similar processing was applied to the target output values.

4.1.2 Environment modelling results

Table 4.1 shows the mean squared error (MSE) when predicting ∆t when using different
environment models: Linear Regression (LR), feedforward Neural Network (NN),
Recurrent Neural Network (RNN), and Bayesian Neural Network (BNN). Non-Bayesian
models appear to perform better than Bayesian models; in part, this is due to the
difficulty in tuning hyperparameters of Bayesian neural networks.

Table 4.1 Mean squared error (MSE) on a held-out validation set when predicting ∆t

for different environment models: Linear Regression (LR), feedforward Neural Network
(NN), Recurrent Neural Network (RNN), and Bayesian Neural Network (BNN).

LR NN RNN BNN
MSE 0.195 0.171 0.122 0.220

The RNN obtains the best MSE by this metric. Analysis of the performance reveals
that this low MSE is obtained because the predictions produced by the RNN at large
timesteps are very accurate. The RNN likely performs well at a large value of t because
for all t′ ≤ t, the RNN has taken in the ground truth values of st′ as input, and therefore
can form a meaningful representation of the entire history of the patient, which enables
it to predict ∆t accurately. The other models take only the last three states in raw form
as input, which makes predicting ∆t more challenging. Passing in the entire history
to the other models would involve processing a roughly 1000-dimensional input vector
at every timestep in each model, which presents computational challenges. However,
the performance of the RNN at small values of t are poor, as compared to the other
models; the RNN does not seem to have the capacity to predict ∆t accurately at small
t. Increasing the modelling power via adding additional layers or more hidden units
causes severe overfitting, which regularisation methods (such as weight decay) are not
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able to address. Due to this reason, the feedforward neural network is preferred as an
environment model.

Figure 4.1 shows some examples of rollouts for the SOFA score, a measure of patient
severity, using the feedforward neural network environment model. To generate these
plots, a trajectory was randomly sampled from a validation set. The initial state
in this trajectory, with the concatenated history (zeroed out initially as there is no
history for the first state), h1 was passed as input to the network, producing ∆̂1. The
predicted next state was calculated using: ŝ2 = s1 + ∆̂1. ĥ2 is computed from this by
the concatenation process, and using the clinician action at t = 2: a2. We then use ĥ2

to calculate ∆̂2. Note that we only use the true state to initialise the process; after
that, we use the model’s predictions, making this an accurate representation of the use
of the environment model as an (approximate) simulator.

These plots show that neural network sometimes can represent the overall trend in
SOFA score over a patient’s trajectory accurately; this is most noticeable for Figures 4.1a,
4.1b and 4.1c. However, the task of environment modelling is clearly very challenging –
there are large changes in the value of the SOFA score at certain timesteps, and there
are several timesteps where the values do not change at all (likely to there being missing
data at these points which have been imputed). The accuracy of the predictions worsens
as we increase the length of the rollout; this is understandable, as prediction errors
compound over multiple timesteps.

Although these plots illustrate that the modelling performance is not highly accurate,
given that the neural network environment model is able to capture the overall trend
of the SOFA score in some examples, it may offer sufficient performance to be able to
assist in discovering improved policies, which is explored in the next section. It is clear
however that there is more investigation required into the best choice of environment
model for this domain.
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(a) Rollout 1 (b) Rollout 2

(c) Rollout 3 (d) Rollout 4

(e) Rollout 5 (f) Rollout 6

Fig. 4.1 Examples of rollouts from the neural network environment model for the SOFA
score, an important physiological feature that captures severity of sepsis. Predictions
from the network can approximately capture the trend in SOFA score in certain cases,
but not others. The irregular fluctuations exhibited by the true SOFA score illustrate
the difficulty of the task.
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4.2 Policy search

After learning an environment model, policy search algorithms are used to find an
appropriate policy π. This section details the approach used to discover a suitable
policy.

4.2.1 Procedure for policy discovery

In medical settings, it is important not to stray too far from the policy used by clinicians
for interpretability reasons; therefore, the approach to discover improved treatment
strategies proceeded as follows:

• Learn the parameters ϕ describing the policy followed by clinicians, µ(a|ht; ϕ),
using supervised learning.

• Initialise the parameters θ of a new policy π(a|ht; θ) using ϕ.

• Using the learned environment model, simulate rollouts from π(a|ht; θ). Use a
policy improvement algorithm with a small learning rate (to ensure small policy
updates, staying close to µ) to improve π.

By initialising π to be similar to the treatment strategy followed by clinicians and only
allowing small updates (via the small learning rate and limited training steps) we can
find a final treatment strategy that, although not necessarily optimal (as it is based
on what clinicians follow), improves on what doctors currently practice and remains
interpretable.

Modelling clinician behaviour: The first step of this procedure is to model clinician
behaviour by learning the policy µ. We formulated this as a classification task, where
we learned parameters ϕ∗ that minimised the following objective:

ϕ∗ = arg minϕ

1
|D|

∑
(st,at)∈D

∑
a′∈A

−1(at = a′) log
(
µ(a′|ht; ϕ)

)
This objective function is the average cross-entropy between the predictive distribution
over actions from the neural network and the label distribution (encoding the action
taken by the clinician).

The model that performed well on this task was a two-layer feedforward neural
network with 64 hidden units in each layer, with ReLU activations. An L2 regularisation
penalty was added to the loss to prevent overfitting. This was implemented using
TensorFlow [21]. The resulting held-out accuracy in predicting actions was about 60%;
the fact this is low represents how clinicians are quite stochastic in their decision making
when treating sepsis.
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Policy improvement: Having modelled the clinician’s policy, we then improved
it using the environment model. We used policy improvement algorithms, with the
environment model acting as a ‘simulator’ for us to sample trajectories, or rollouts,
from. In this process, we sampled a random trajectory from the dataset, and selected
the starting state. We then performed a rollout from this starting state for 10 timesteps
(as discussed, long horizons suffer from very poor predictions, so this was a compromise
between the typical length of a trajectory in the dataset and the quality of the rollout),
using actions sampled from π(a|ht; θ). We recorded the states, actions, and rewards,
and then used gradient ascent with these sampled trajectories to improve the policy.

Two policy improvement algorithms were compared – the REINFORCE Policy
Gradient algorithm (PG) [34], which is a high variance, yet simple, method, and the
Proximal Policy Optimization algorithm (PPO) [35], which is a lower variance actor-
critic method employing an approximate trust-region optimisation procedure to ensure
stable updates to π. The PPO algorithm has additional modelling complexity, as we
must simultaneously learn a critic to model V π(s); for this reason it is informative
to compare PPO to a baseline. The critic was modelled using a single layer neural
network with 100 hidden units and ReLU activation. All procedures were implemented
in TensorFlow [21].

4.3 Qualitative analysis of learned policies

Qualitative results for the performance of the models in different severity regimes are
presented here; that is, timesteps at which patients had relatively low SOFA scores
(under 5), timesteps at which patients had medium SOFA scores (5 – 15) and timesteps
at which patients had high SOFA scores (over 15). This is to understand how the model
performs on different severity subcohorts.

Figure 4.2 shows the discovered treatment policies on a held-out test set when using
the PPO algorithm and the PG algorithm. Also included is the policy used by the
clinician. The action numbers index the different discrete actions selected at a given
timestep, and the charts shown aggregate actions taken over all timesteps for those
cohorts. Action 0 refers to no drugs given to the patient at that timestep, and increasing
actions refer to higher drug dosages, where drug dosages are represented by quartiles.
As shown, physicians do not often prescribe vasopressors to patients, unless patients
have very high SOFA scores (note the high density of actions corresponding to zero
vasopressor dose in the first two histograms) and this behavior is reflected in the policy
learned by both the PPO and PG models. This result is clinically interpretable; even
though vasopressors are commonly used in the ICU to elevate mean arterial pressure,
many patients with sepsis do not have low blood pressure and therefore do not need
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vasopressors. Additionally, there have not been many clinical trials reporting improved
patient outcomes from using vasopressors [36].

The PG algorithm’s policy remains very close to that used by clinicians when
considering aggregated actions. The reason for this is likely the small learning rate used.
With a larger learning rate, the policy deviates quite significantly from that followed
by clinicians and is no longer clinically interpretable. The PPO algorithm’s policy has
some similarities to what clinicians follow, but also exhibits some noticeable differences,
especially in the middling-severity regime. Of note is the high density of actions with
a middling vasopressor and high IV fluid dose: action index (2,4). This result is not
observed in the clinician’s policy.

(a) Clinician treatment policy

(b) PPO treatment policy

(c) Policy Gradient treatment policy

Fig. 4.2 Treatment policy followed by the clinician and those discovered by the models
on a held-out test set, stratified by patient severity.

Figure 4.3 shows the correlation between the observed mortality, and the difference
between the treatment doses suggested by the PPO algorithm’s policy and the actual
doses given by clinicians. The dosage differences at individual timesteps were binned,
and mortality counts were aggregated. The mean and standard deviation of the observed
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mortality proportion in each bin are shown. The results are stratified based on patient
SOFA score. Figure 4.4 depicts the same plot for the policy learned by the PG algorithm.

From this qualitative analysis, it appears that the PPO algorithm learns a strong
treatment policy in the medium SOFA regime. We observe low mortalities when the
dosage from the learned policy and dosage given by clinicians coincide, at a difference of
0, indicating the potential validity of the learned policy; when clinicians act according
to what is suggested by the learned policy, patients appear to have better outcomes.
The observed mortality proportion then increases as the difference between the optimal
dosage and the true dosage increases. The PG algorithm’s policy does not show this
particular characteristic.

In the low SOFA regime, the baseline mortality is quite low; as a result, these
qualitative plots are not quite as informative.

For high SOFA scores, the performance of both models appears to be weaker, with
zero deviation not indicating the best outcomes. This could be due to the lack of data
points available for this regime, and also the difficulty in learning a strong policy when
patients have severe sepsis. It is likely that the environment model in this regime is
inaccurate, as patients with severe sepsis exhibit significant physiological changes from
timestep to timestep, which the environment model is not able to represent effectively. It
may be reasonable to follow the treatment policy suggested by clinicians when patients
have high severity sepsis – this is explored further in Section 4.4.
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(a) PPO low SOFA

(b) PPO mid SOFA

(c) PPO high SOFA

Fig. 4.3 Comparison of how observed mortality varies with the difference between the
dosages recommended by the learned policy using the PPO algorithm and the dosages
administered by clinicians on a held-out test set.
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(a) PG low SOFA

(b) PG mid SOFA

(c) PG high SOFA

Fig. 4.4 Comparison of how observed mortality varies with the difference between the
dosages recommended by the learned policy using the PG algorithm and the dosages
administered by clinicians on a held-out test set.
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4.4 Quantitative analysis of learned policies

This section considers the quantitative evaluation of polices learned using model-based
RL, supplementing the qualitative analysis in Section 4.3. We firstly consider the
performance using the PHWIS estimator.

4.4.1 Results using the PHWIS estimator

Table 4.2 shows OPE results for the best configurations of the Proximal Policy Opti-
misation (PPO) and REINFORCE Policy Gradient (PG) algorithms, on a held out
test set. In order to form the estimates, an approximate k-Nearest Neighbours (kNN)
model was used to represent the behaviour policy, using 250 neighbours to form the
distribution estimate. The PHWIS estimator is used to generate these results as it
does not require learning an approximate model (AM) of the MDP, and so is useful to
consider for initial analysis. Note that the value of the clinician’s policy, V πb , obtained
using the Monte Carlo estimator, is found to be 9.90.

Table 4.2 OPE results using the PHWIS estimator for the best configurations of the
two policy improvement algorithms considered – Proximal Policy Optimisation (PPO)
and the REINFORCE Policy Gradient algorithm (PG). The PPO algorithm achieves
an improvement over the clinician policy (clinician value estimate using Monte-Carlo is
9.90), whereas the PG algorithm only improves slightly on clinician performance.

PPO (90 training iterations) PG (30 training iterations)

V̂ πe
PHWIS 10.8 9.93

The best-performing PPO algorithm performs better than the clinician policy, but
not by a significant amount. The PG algorithm does not appear to do as well in this
test, and only just outperforms the clinician. This reinforces the conclusions drawn in
Section 4.3, where the qualitative analysis indicated that the PG algorithm did not
improve on what clinicians followed. The reasoning for this could be high variance
of the specific PG method used (the REINFORCE algorithm); the PPO algorithm,
through using an actor-critic method, does not suffer as seriously from this issue.

4.4.2 Blending clinical and discovered treatment policies

Section 4.3 revealed that when patient states were stratified by SOFA score, the PPO
algorithm showed improvement over the strategy followed by clinicians in the medium
SOFA regime, but did not learn as effective policies in the low SOFA and high SOFA
regime, due to the lack of clear signal in the low SOFA regime (low baseline mortality),
and the lack of data points in the high SOFA regime (leading to poorer environment
model performance). Given the safety-critical nature of this domain, it is well-motivated
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to consider relying on the clinician’s policy in regimes where the model is believed to
have inferior performance.

Table 4.3 considers the best-performing PPO model from Section 4.4.1 and presents
results using the PHWIS, PHWDR, and Approximate Model (AM) estimators when we
adjust what policy is active in each severity regime (clinician or model-based RL). To
obtain the AM estimator and the AM terms for the PHWDR estimator, the Fitted Q
Iteration (FQI) algorithm [24] was used with a random forest with 80 trees to represent
the quantity Q̂πe(s, a).

Firstly, these results show that the AM estimator does not appear to discriminate
significantly between the learned policies; all policies have similar values. The value
of the clinician policy from FQI, V̂ πb

AM, is found to be 9.36, again very similar to the
values of the other evaluation policies. It is therefore difficult to draw conclusions from
considering these results in isolation.

When considering the PHWIS and PHWDR estimators, it appears that the best
policy is obtained when relying on the clinical policy in the low and high severity regimes,
and the RL-learned policy in the medium severity regime. The two estimation procedures
show reasonable agreement in estimated value, though there are discrepancies between
them. However, as both show similar trends, and broadly agree with the conclusions
found from the qualitative analysis (using the learned policy in the medium severity
regime can offer improvements), it may be possible to conclude that this policy does
improve on what clinicians currently follow. Investigating the specific policy discovered
in this regime could offer valuable clinical insight.

The fact that this particular blending strategy obtains good results can be explained.
It is likely that in low/high severity regimes, clinicians have a set protocol they follow,
which performs relatively well; it therefore does not make sense to deviate from this.
This is clearly seen in the high severity regime where clinicians often prescribe the
maximum dosage of both drugs considered. In the medium severity regime, there is
more variability in clinician action, and model-based RL is effective here in identifying
suitable courses of action.

An extension on this analysis is to devise the most appropriate blending strategy
when combining the clinician and PPO policies; the method used here is quite coarse,
and it is reasonable to expect further improvements if the blending strategy is refined.
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Table 4.3 OPE results using the PHWIS, PHWDR, and AM estimators when relying on
combinations of the clinician’s policy and the PPO policy. As a comparison, results are
also shown for following the clinical policy in all regimes. By relying on the clinician
policy in regimes where the PPO policy is understood to not perform as effectively,
improvements in performance are observed for the PHWIS and PHWDR estimators.

Low SOFA Medium SOFA High SOFA V̂ πe
PHWIS V̂ πe

PHWDR V̂ πe
AM

PPO PPO PPO 10.8 11.5 9.33
PPO PPO Clinician 11.7 11.8 9.35
Clinician PPO Clinician 12.1 12.8 9.35
PPO Clinician PPO 7.63 7.58 9.34
Clinician Clinician Clinician 10.2 9.87 9.36



Chapter 5

Conclusion

5.1 Main findings

This work explored the use of reinforcement learning (RL) to provide medical decision
support for sepsis treatment. The project examined two areas: developing an empirical
evaluation procedure to assess the quality of sepsis treatment strategies, and investigating
the use of model-based RL algorithms to deduce improved treatment strategies for
sepsis.

The empirical evaluation procedure developed in this work addressed two notable
challenges with using existing Off-Policy Evaluation (OPE) methodologies in obser-
vational studies – how to estimate an unknown behaviour policy and approximate
model (AM) terms for use in OPE. The importance of well-calibrated behaviour policy
models was discussed, and a non-parametric method based on approximate k-Nearest
Neighbours (kNN) was found to give superior results over parameteric models such
as random forests and neural networks. A procedure for estimating AM terms using
random forests and Fitted Q Iteration (FQI) [24] gave promising results, over alternative
methods using kernel-based reinforcement learning [26] and temporal-difference SARSA
learning. OPE estimators using approximate kNN and FQI were found to give the best
performance when evaluating treatment strategies for sepsis.

The investigation into model-based RL revealed that neural networks can be used
to model the physiological dynamics of patients with sepsis (they can be used as
environment models). Although the task of modelling physiology is challenging, these
environment models appear to be accurate enough for use in discovering improved
treatment strategies. When using policy search procedures to learn medical treatment
strategies for sepsis, an actor-critic algorithm, Proximal Policy Optimisation (PPO)
[35], demonstrated encouraging qualitative results. The policy search approach uses the
treatment strategy followed by clinicians as an initialisation point in order to ensure
that the treatment strategy learned after using PPO is still clinically interpretable.
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The developed evaluation procedure, with an approximate kNN behaviour policy
model and an FQI AM, was used to assess the treatment strategies learned with model-
based RL. Overall, this treatment strategy appeared to improve on that followed by
clinicians, and performed well for patients that had medium severity sepsis. However,
it performed more poorly when patients had low/high severity sepsis. This result was
corroborated by the qualitative analysis. By blending the strategy used by clinicians
and that discovered by RL, a potentially more effective policy was found. This is an
encouraging result, showing that the combination of existing clinical intuition and use
of observational data could help improve the standard of care for patients with sepsis.

5.2 Meeting of objectives

The initial objectives are restated here:

1. Develop an empirical evaluation procedure to assess the quality of medical treat-
ment strategies for sepsis.

2. Investigate whether continuous state-space model-based RL algorithms can be
used to find improved treatment policies for sepsis.

This study has contributed important results towards both these objectives.
The developed evaluation procedure identified the key issue of calibration for be-

haviour policy modelling, and proposed an estimation approach to ensure good calibra-
tion, namely k-Nearest Neighbours. The procedure also discovered the most appropriate
model class/learning algorithm to represent approximate model terms – Fitted Q Iter-
ation. OPE estimators combining these methods were found overall to give the best
results. This work also formulated the step-wise Per-Decision Weighted Importance
Sampling (step-wise PHWIS) and Per-Decision Weighted Doubly Robust (PHWDR)
estimators, extending prior work.

In terms of model-based RL, this work investigated different methods of environment
modelling, and found feedforward neural networks to be the most appropriate technique.
The proposed procedure for policy search (discovering improved medical treatment
policies) using the Proximal Policy Optimization [35] algorithm allows learned treatment
strategies to remain interpretable and to potentially improve on what clinicians currently
follow. This was verified using qualitative analysis and different methods of quantitative
analysis.
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5.3 Further work

5.3.1 Off-Policy Evaluation

An important direction of future work is to examine whether the OPE procedure devel-
oped here works well for other medical problems; for example, mechanical ventilation
weaning [37], and optimal heparin dosing [38].

It is also of interest to develop an evaluation procedure that avoids importance sampling
(IS), for several reasons. Firstly, using IS in OPE can result in high variance estimators,
which is undesirable. Secondly, avoiding IS may prevent the need to model the be-
haviour policy, which could improve the quality of OPE, as poorly estimated behaviour
policies can lead to unreliable evaluation. Thirdly, IS approaches are not effective
when evaluation policies are deterministic. If the evaluation policy is deterministic, the
importance weight will become zero unless the behaviour policy and evaluation policy
agree on the action taken on every timestep. For long trajectories, this agreement is
highly unlikely. An approach without IS may be able to address this challenge.

5.3.2 Model-based RL

Learning high-quality policies with model-based RL is most likely limited by the efficacy
of the developed environment model. Building a more accurate environment model
could lead to discovering superior treatment strategies. For example, the use of domain
knowledge in the construction of the environment model could allow physiological
dynamics to be captured more effectively.

More work could also be done on blending clinician and model-based RL treatment
strategies. It is also of interest to understand when clinicians make mistakes/act
suboptimally, which this direction of investigation may reveal.
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Appendix A
Physiological features in state-space

The physiological features defining the state space are presented here.

Demographics/Static: Shock Index, Elixhauser, SIRS (Systemic Inflammatory Re-
sponse Syndrome), Gender, Re-admission, GCS (Glasgow Coma Scale), SOFA (Sequen-
tial Organ Failure Assessment), Age

Lab Values: Albumin, Arterial pH, Calcium, Glucose, Hemoglobin, Magnesium,
PTT (Partial Thromboplastin Time), Potassium, SGPT (Serum Glutamic-Pyruvic
Transaminase), Arterial Blood Gas, BUN (Blood Urea Nitrogen), Chloride, Bicarbonate,
INR (International Normalized Ratio), Sodium, Arterial Lactate, CO2, Creatinine,
Ionised Calcium, PT (Prothrombin Time), Platelets Count, SGOT (Serum Glutamic-
Oxaloacetic Transaminase), Total bilirubin, White Blood Cell Count

Vital Signs: Diastolic Blood Pressure, Systolic Blood Pressure, Mean Blood Pressure,
PaCO2, PaO2, FiO2, PaO2/FiO2 ratio, Respiratory Rate, Temperature (Celsius), Weight
(kg), Heart Rate, SpO2

Intake and Output Events: Fluid Output (4 hourly period), Total Fluid Output,
Mechanical Ventilation



Appendix B
Risk Assessment

This project has been entirely computational; as a result, the principal hazard identified
before commencing was computer use. I believe this was, overall, an accurate assessment,
as there was no laboratory work conducted over the course of the project.

However, with regards to the computer work involved in this project, I think the
risk assessment could have been more thorough. As I had to spend a significant amount
of time programming for this project, I found that at the end of longer work sessions,
my shoulders and back were slightly painful. This most likely arose from poor posture
and improper seat positioning at the desk in my room, where I conducted the majority
of my work. In addition, as the majority of work was completed using my laptop, I
used the inbuilt keyboard and mouse, which may have contributed to the problem – I
was not able to assume a more relaxed and natural position while working.

I did tackle these ergonomic issues two months after starting the project – I began
to use the department-provided keyboard, mouse, and laptop stand while working,
which improved my posture and prevented back/shoulder pain. This was a valuable
learning experience for me, and I will bear it in mind in the future when working on
computationally-intensive projects.

Although I managed to solve these ergonomic issues, I feel that the original risk
assessment could have detailed these problems in some more depth, which would have
prevented any back/shoulder discomfort in the first place. A proper assessment of the
ergonomic risks involved with extended computer use is therefore what I would have
done differently were I to conduct a risk assessment again. In particular, I could have
researched more about the best desk setup for a computationally-intensive laptop-based
project, which would have led to me to find out that an external keyboard and mouse,
and a laptop stand, are effective in reducing ergonomic strain.
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